Solutions of the resit exam of WIKR-06

12 July 2018

$1 \mathbf{a}$

We have

$$
p_{X}(1)=\mathbb{P}(X=1)=p_{X, Y, Z}(1,0,0)+p_{X, Y, Z}(1,0,1)+p_{X, Y, Z}(1,1,0)+p_{X, Y, Z}(1,1,1)=4 a
$$

and hence $p_{X}(0)=1-p_{X}(1)=1-4 a$.
Similarly we determine that $p_{Y}=p_{Z}=p_{X}$.

1b

Since X takes values 0,1 we have

$$
\mathbb{E} X=\sum_{x} \mathbb{P}(X=x)=\mathbb{P}(X=1)=4 a
$$

Similarly, we have

$$
\begin{aligned}
\mathbb{E}(X \mid Y=i, Z=j) & =\sum_{x} x \mathbb{P}(X=x \mid Y=i, Z=j)=\mathbb{P}(X=1 \mid Y=i, Z=j) \\
& =\frac{p_{X, Y, Z}(1, i, j)}{p_{X, Y, Z}(0, i, j)+p_{X, Y, Z}(1, i, j)} \\
& = \begin{cases}\frac{1}{2} & \text { if }(i, j) \neq(0,0), \\
\frac{a}{1-6 a} & \text { if }(i, j)=(0,0)\end{cases}
\end{aligned}
$$

and,

$$
\begin{aligned}
\mathbb{E}(X \mid Y=i) & =\sum_{x} x \mathbb{P}(X=x \mid Y=i)=\mathbb{P}(X=1 \mid Y=i) \\
& =\frac{p_{X, Y, Z}(1, i, 0)+p_{X, Y, Z}(1, i, 1)}{p_{X, Y, Z}(0, i, 0)+p_{X, Y, Z}(0, i, 1)+p_{X, Y, Z}(1, i, 0)+p_{X, Y, Z}(1, i, 1)} \\
& = \begin{cases}\frac{1}{2} & \text { if } i \neq 0, \\
\frac{2 a}{1-4 a} & \text { if } i=(0,0) .\end{cases}
\end{aligned}
$$

1c
First note that (by symmetry) of course $\mathbb{E} Y=\mathbb{E} X$, and recall

$$
\operatorname{Cov}(X, Y)=\mathbb{E} X Y-\mathbb{E} X \mathbb{E} Y
$$

Furthermore

$$
\mathbb{E} X Y=\mathbb{P}(X Y=1)=p_{X, Y, Z}(1,1,0)+p_{X, Y, Z}(1,1,1)=2 a .
$$

Hence

$$
\operatorname{Cov}(X, Y)=2 a-16 a^{2}=2 a(1-8 a) .
$$

1d

Recall from lecture notes that if X, Y are independent then $\operatorname{Cov}(X, Y)=0$. Hence, by $1 \mathrm{c}, X, Y$ must be dependent for $a \notin\left\{0, \frac{1}{8}\right\}$.

On the other hand they are independent when $a=0$ or $a=\frac{1}{8}$. To see this when $a=0$ note that then $X=Y=0$ with probability one and hence

$$
\begin{aligned}
\mathbb{P}(X=x, Y=x) & = \begin{cases}1 & \text { if } x=y=0 \\
0 & \text { otherwise }\end{cases} \\
& =p_{X}(x) p_{Y}(y)
\end{aligned}
$$

To see it when $a=\frac{1}{8}$, note that in that case, for all $x, y \in\{0,1\}$:

$$
\mathbb{P}(X=x, Y=y)=p_{X, Y, Z}(x, y, 0)+p_{X, Y, Z}(x, y, 1)=\frac{2}{8}=(1 / 2)^{2}=p_{X}(x) p_{Y}(y)
$$

1e

We first determine the pmf:

$$
p_{X+Y+Z}(x)= \begin{cases}1-7 a & \text { if } x=0 \\ 3 a & \text { if } x=1 \\ 3 a & \text { if } x=2 \\ a & \text { if } x=3\end{cases}
$$

Thus the cdf is

$$
F_{X+Y+Z}(x)= \begin{cases}0 & \text { if } x<0 \\ 1-7 a & \text { if } 0 \leq x<1 \\ 1-4 a & \text { if } 1 \leq x<2 \\ 1-a & \text { if } 2 \leq x<3 \\ 1 & \text { if } x \geq 3\end{cases}
$$

2a

$\Gamma(1 / 2)=\int_{0}^{\infty} t^{-1 / 2} e^{-t} d t \stackrel{t=x^{2} / 2}{=} \int_{0}^{\infty} e^{-x^{2} / 2} \sqrt{2} d x=\sqrt{2} \cdot \frac{1}{2} \cdot \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2} \cdot \frac{1}{2} \cdot \sqrt{2 \pi}=\sqrt{\pi}$.
using the substitution from the hint (giving $d x=(2 t)^{-1 / 2} d t$), that $x \mapsto e^{-x^{2} / 2}$ is an even function and the second part of the hint.

2b

Write $Z=X^{2}$. Clearly $f_{Z}(x)=0$ for $x<0$. Using the hint we have for $x \geq 0$:

$$
\begin{aligned}
f_{Z}(x) & =\frac{d}{d x} F_{X}(\sqrt{x})-\frac{d}{d x} F_{X}(-\sqrt{x})=\frac{1}{2 \sqrt{x}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-x / 2}-\frac{-1}{2 \sqrt{x}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-x / 2} \\
& =\frac{x^{-1 / 2} e^{-x / 2}}{\sqrt{\pi} \cdot \sqrt{2}}=\frac{x^{1 / 2-1} e^{-x / 2}}{\Gamma(1 / 2) \cdot 2^{1 / 2}}
\end{aligned}
$$

(using a).

2c

Since X_{1}, X_{2} are nonnegative $f_{X}(x)=0$ for $x<0$. For $x \geq 0$, by the convolution formula:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X_{1}}(s) f_{X_{2}}(x-s) d s \\
& =\int_{0}^{x} \frac{s^{\alpha_{1}-1} e^{s / \beta}}{\Gamma\left(\alpha_{1}\right) \beta^{\alpha_{1}}} \cdot \frac{(x-s)^{\alpha_{2}-1} e^{(x-s) / \beta}}{\Gamma\left(\alpha_{2}\right) \beta^{\alpha_{2}}} d s \\
& =\frac{e^{x / \beta}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}} \int_{0}^{x} s^{\alpha_{1}}(x-s)^{\alpha_{2}} d s \\
& =\frac{e^{x / \beta}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}} x^{\alpha_{1}+\alpha_{2}-2} \int_{0}^{x}(s / x)^{\alpha_{1}-1}(1-(s / x))^{\alpha_{2}-1} d s \\
& \stackrel{t}{=s / x} \frac{e^{x / \beta}}{\Gamma} x^{\alpha_{1}+\alpha_{2}-1} \int_{0}^{1} t^{\alpha_{1}-1}(1-t)^{\alpha_{2}-1} d t
\end{aligned}
$$

(Note the substitution $t=s / x$ in the last line gives $d s=x d t$.)

2d

Since f_{X} is a pdf we must have

$$
1=\int_{-\infty}^{\infty} f_{X}(x) d x=\frac{\int_{0}^{1} t^{\alpha_{1}-1}(1-t)^{\alpha_{2}-1} d t}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}} \cdot \int_{0}^{\infty} x^{\alpha_{1}+\alpha_{2}-1} e^{x / \beta} d x
$$

On the other hand, the density of the $\operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right)$-distribution also integrates to one. I.e.

$$
1=\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}} \cdot \int_{0}^{\infty} x^{\alpha_{1}+\alpha_{2}-1} e^{x / \beta} d x
$$

Combining these those equalities gives

$$
\int_{0}^{1} t^{\alpha_{1}-1}(1-t)^{\alpha_{2}-1} d t=\frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}}{\int_{0}^{\infty} x^{\alpha_{1}+\alpha_{2}-1} e^{x / \beta} d x} \cdot \frac{\int_{0}^{\infty} x^{\alpha_{1}+\alpha_{2}-1} e^{x / \beta} d x}{\Gamma\left(\alpha_{1}+\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}}=\frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}
$$

(Alternatively, you could have used the substitution $t=x / \beta$ to compute that $\int_{0}^{\infty} x^{\alpha_{1}+\alpha_{2}-1} e^{x / \beta} d x=$ $\left.\beta^{\alpha_{1}+\alpha_{1}} \Gamma\left(\alpha_{1}+\alpha_{2}\right).\right)$

2 e

Write $Y_{i}:=X_{i}^{2}$. Then Y_{1}, \ldots, Y_{n} are i.i.d. Gamma(1/2,2)-distributed by part b. Combining 2 c and 2 d , we know that if $Z_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ and $Z_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)$ are independent, then $Z_{1}+Z_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right)$. Repeated applications of this observation show $Y_{1}+\cdots+Y_{n} \sim$ $\operatorname{Gamma}(n / 2,2)$.

2f

This is the $\operatorname{Exp}(2)$-distribution. That is, the exponential distribution with parameter $\beta=2$.

3a

Let $C_{i}:=\{$ flea is on cat at time $i\}$. We have

$$
\begin{aligned}
\mathbb{P}\left(C_{n+1}\right) & =\mathbb{P}\left(C_{n+1} \mid C_{n}^{c}\right) \cdot \mathbb{P}\left(C_{n}^{c}\right)+\mathbb{P}\left(C_{n+1} \mid C_{n}\right) \cdot \mathbb{P}\left(C_{n}\right) \\
& =\mathbb{P}\left(\text { jump in the }(n+1) \text {-st second } \mid C_{n}^{c}\right) \cdot \mathbb{P}\left(C_{n}^{c}\right)+\mathbb{P}\left(\text { stay put in the }(n+1) \text {-st second } \mid C_{n}\right) \cdot \mathbb{P}\left(C_{n}\right) \\
& =p\left(1-p_{n}\right)+(1-p) p_{n} .
\end{aligned}
$$

3b

Note the recursion from 3a can be rewritten as

$$
p_{n+1}=p+(1-2 p) p_{n}
$$

Repeated applications of this gives

$$
\begin{aligned}
p_{n+1}= & p+(1-2 p)\left(p+(1-2 p) p_{n-1}\right) \\
= & p+(1-2 p) p+(1-2 p)^{2} p_{n-1} \\
= & p+(1-2 p) p+(1-2 p)^{2} p+(1-2 p)^{3} p_{n-2} \\
& \quad \vdots \\
= & p+(1-2 p) p+\cdots+(1-2 p)^{n} p+(1-2 p)^{n+1} p_{0} \\
= & p\left(1+(1-2 p)+\cdots+(1-2 p)^{n}\right)+(1-2 p)^{n+1} p_{0} \\
= & p\left(\frac{1-(1-2 p)^{n+1}}{1-(1-2 p)}\right)+(1-2 p)^{n+1} p_{0} \\
= & \frac{1}{2}\left(1-(1-2 p)^{n+1}\right)+(1-2 p)^{n+1} p_{0} .
\end{aligned}
$$

3c

Suppose that the flea is initially on the cat. Then p_{n} is exactly the probability that an even number of jumps occur in the first n seconds. Which also equals $\mathbb{P}\left(X_{n}\right.$ is even $)$. Hence, using 3 b and that $p_{0}=1$ if the flea starts on the cat:

$$
\mathbb{P}\left(X_{n} \text { is even }\right)=\frac{1}{2}\left(1-(1-2 p)^{n}\right)+(1-2 p)^{n}=\frac{1}{2}+\frac{1}{2}(1-2 p)^{n}
$$

So in particular $\mathbb{P}\left(X_{n}\right.$ is even $) \xrightarrow{n \rightarrow \infty} \frac{1}{2}$.
(Important : we are using that $p \neq 0,1$ so that $|1-2 p|<1$. Otherwise it is of course false!)

3d

Now we get the recursion

$$
p_{n+1}=\left(1-p_{\mathrm{cat}}\right) p_{n}+p_{\mathrm{dog}}\left(1-p_{n}\right)=p_{\mathrm{dog}}+\left(1-p_{\mathrm{cat}}-p_{\mathrm{dog}}\right) p_{n}
$$

Repeated applications of this, and continuing as in 3 b we get

$$
p_{n+1}=p_{\mathrm{dog}}\left(\frac{1-\left(1-p_{\mathrm{cat}}-p_{\mathrm{dog}}\right)^{n+1}}{p_{\mathrm{cat}}+p_{\mathrm{dog}}}\right)+p_{0}\left(1-p_{\mathrm{cat}}-p_{\mathrm{dog}}\right)^{n+1}
$$

Since $0<p_{\text {cat }}, p_{\text {dog }}<1$ we have $\left|1-p_{\text {cat }}-p_{\text {dog }}\right|<1$ so that $\left(1-p_{\text {cat }}-p_{\text {dog }}\right)^{n} \xrightarrow{n \rightarrow \infty} 0$ and hence

$$
p_{n} \xrightarrow{n \rightarrow \infty} \frac{p_{\mathrm{dog}}}{p_{\mathrm{cat}}+p_{\mathrm{dog}}}
$$

no matter the value of p_{0}.

